LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SECOND SEMESTER - APRIL 2025

UMT2MC02 - INTEGRAL CALCULUS

Date: 29-04-2025 Dept. No. Max. : 100 Marks
Time: 09:00 AM - 12:00 PM

SECTION A - K1& K2 (CO1)				
Q.No	Levels	Answer ALL the Questions $(10 \times 2 = 20)$		
1	K1	Define Gamma function.		
2		Show that $\beta(m,n) = \beta(n,m)$.		
3		Evaluate $\int_0^1 \int_0^2 xy dx dy$.		
4		Write the directional derivative of φ at the point $P(x, y, z)$ in the direction cosines l, m, n .		
5		What is known as Quadrature?		
6		Find $\nabla \varphi$ for the scalar point function $\varphi(x, y, z) = xyz$ at the point (2,1,1).		
7		Write the formula for work done by a force.		
8	K2	Write the formula to evaluate surface integral, whose projection on xoy plane.		
9		State Green's theorem.		
10		State Gauss divergence theorem.		
SECTION B- K3& K4 (CO2)				
		Answer ALL the Questions $(4 \times 10 = 40)$		
11		Prove that (i) $\Gamma(n+1) = n!$, where n is a positive integer.		
		$(ii) \int_0^{\pi/2} \sin^7 \theta \cos^5 \theta d\theta = \frac{1}{120}.$		
		[OR]		
12		Find the area of the cardioid $r = a(1 - \cos\theta)$		
13	K3	Evaluate $\iint xydxdy$ over the region bounded by the lines $x = 0$; $y = 0$ and $x + y = 1$.		
		[OR]		
14		Prove that $\vec{A} = (2x + yz)\hat{\imath} + (4y + xz)\hat{\jmath} - (6z - xy)\hat{k}$ is solenoidal as well as irrotational and		
		also find the scalar potential of \vec{A} .		
15		(i) If $\vec{F} = x^2 y \hat{\imath} + y^2 z \hat{\jmath} + z^2 x \hat{k}$, then find $curl\ curl\ \vec{F}$.		
		(ii) If \vec{A} is a vector point function, then prove that $\nabla \cdot (\nabla \times \vec{A}) = 0$.		
		[OR]		
16				
	K4	If $\vec{F} = 3xy\hat{\imath} - y^3\hat{\jmath}$, compute $\int_C \vec{F} \cdot d\vec{r}$ along $y = 2x^2$ from (0,0) to (1,2).		
47				
17		Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$, where $\vec{F} = z\hat{i} + x\hat{j} - y^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 =$		
		1 include in the first octant between the planes $z = 0$ and $z = 2$.		
10		[OR]		
18		Using Green's theorem show that $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy = 20$, where C is the		
		boundary of the rectangular area enclosed by the lines $x = 0, x = 1, y = 0, y = 2$ in the xoy		
		plane.		

SECTION C – K5 & K6 (CO3)			
	Ansv	wer ALL the Questions $(2 \times 20 = 40)$	
19		(a) Derive the relation between Beta and Gamma functions.	
	K5	(b) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral	
		$\int_0^1 x^5 (1-x^3)^{10} dx. ag{10+10}$	
		[OR]	
20		(a) Find the area enclosed between an arc of the cycloid $x = a(\theta - sin\theta)$, $y = a(1 - cos\theta)$ and its base.	
		(b) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed by the sphere	
		$x^2 + y^2 + z^2 = 1. (10+10)$	
21		(a) Prove that $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$.	
	K6	(b) Evaluate $\iiint_V (\nabla \cdot \vec{F}) dV$, where V is the region bounded by $x = 0, y = 0, z = 0$ and	
		2x + 2y + z = 4. (10+10)	
		[OR]	
22		Verify Gauss divergence theorem for $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ over the cube bounded by	
		x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.	

\$\$\$\$\$\$\$\$\$\$\$\$\$